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Abstract. Electron-correlation effects at metal surfaces can be studied qualitatively within the
framework of the Hubbard model for a semi-infinite lattice. We propose a moment approach for
an approximate determination of the local electronic self-energy that is applicable for systems
with reduced translational symmetry. For the strong-correlation regime a one-poleansatzfor
the self-energy can be motivated. Alla priori unknown parameters in theansatzfor the self-
energy are calculated self-consistently by exploiting the equality between two alternative but
exact representations for the first four moments of the spectral density. With the resulting
expression for the self-energy at hand, the many-body problem reduces to the problem of finding
the local density of states (LDOS) for an energy-dependent effective one-particle Hamiltonian.
We determine the LDOS for the semi-infinite system using a straightforward generalization of
the standard tight-binding recursion method that is suitable for treating an energy-dependent
Hamiltonian. The resulting energy dependence of the recursion coefficients is studied in detail
for the (100) surface of a bcc crystal and an interpolation procedure for a numerically feasible
evaluation of the theory is suggested.

1. Introduction

The Hubbard model [1–3] has evolved into one of the most extensively studied models
in solid-state physics. Originally it was formulated to study the conditions for collective
magnetic order, but nowadays quite generally contributes to the understanding of correlation
effects among itinerant valence electrons. As the Hubbard model is a highly idealized
subject for investigating the electronic structure of a solid, there is hardly a direct relation
to experimental results. Nevertheless, much insight can be gained into the fundamental
mechanisms responsible for spontaneous magnetism, for metal–insulator transitions and
high-temperature superconductivity, for example. Moreover, the model serves as a reference
for the development and comparison of different approaches to the problem of electron
correlations.

The Hubbard model describes the complex interplay between the electrons’ kinetic
energy, their Coulomb interaction, the Pauli principle and, additionally, the lattice geometry.
The latter is rather important because of the itinerant nature of the valence electrons;
the electronic structure is expected to be a sensitive function of the local geometrical
environment. The decisive role of the geometry shows up, for example, when comparing
results for different lattice dimensions [4–8]. Sensitive dependencies on the lattice structure
can be observed, e.g., in studies of band magnetism within the three-dimensional Hubbard
model [9–11]. A typical situation where geometrical effects are of primary interest is
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faced at the surface of a single crystal. The reduced coordination number of sites at the
very surface is expected to have important consequences for the electronic structure. The
intimate relation between electron-correlation and surface effects can be studied in detail
within the Hubbard model for a semi-infinite crystal.

Using standard notation the Hubbard model reads

H =
∑
ijσ

(Tij − µδij )c
†
iσ cjσ + 1

2
U

∑
iσ

niσ ni−σ . (1)

Here c
†
iσ (ciσ ) creates (annihilates) an electron at the lattice sitei and with spin direction

σ . The Tij are the hopping integrals,µ denotes the chemical potential,U is the on-site
Coulomb interaction, andniσ = c

†
iσ ciσ is the occupation-number operator. We consider a

‘semi-infinite Hubbard model’ that differs from the usual three-dimensional Hubbard model
only with respect to the purely geometrical cut-off of the hopping at the surface: the sums
over i and j thus extend over the sites of a semi-infinite lattice. Besides the cut-off of
the hopping parameters there is a more implicit effect being introduced by the existence
of the surface, namely an environmental dependence of the hopping [12] as well as of the
Coulomb interaction [13, 14]. At the surfaceTij andU may differ significantly from their
bulk values. For real systems this renormalization of the electronic parameters should be
non-negligible. However, in the present case, studying a model system, it will be ignored
for simplicity; a site-dependent Hubbard interactionUi and an arbitrary dependence of the
hopping parameters on the local geometric structure could easily be taken into account in
principle.

The semi-infinite Hubbard model poses two major problems at least. The first one is
the actual many-body problem. It can be formulated as the problem of finding the correct
self-energy6ijσ (E) for the system of interacting electrons. Provided that the many-body
problem has been solved in some way and an (approximate) expression for the self-energy
has been derived, we can simplify the original model by introducing an effective one-particle
Hamiltonian in the following way:

Heff =
∑
ijσ

(Tij + 6ijσ (E) − µδij )c
†
iσ cjσ . (2)

It is easy to show thatH andHeff yield identical equations of motion for the one-particle
Green functionGijσ (E) = 〈〈ciσ ; c

†
iσ 〉〉E , from which all relevant information on the system

can be obtained. With respect toGijσ (E) we are thus allowed to replaceH by Heff.
The second major problem then consists of solving the equation of motion for the Green

function for a semi-infinite crystal, i.e. solving the effective one-particle problem posed by
Heff. The second problem is surely non-trivial, but should probably allow for a numerically
exact solution. For the first problem, however, we have to accept more or less drastic
simplifications to cast it into a manageable form.

In a preceding study [15] we approximated the self-energy within a mean-field (Hartree–
Fock) theory,6ijσ (E) = δijU〈ni−σ 〉, and solved the one-particle problem by means of the
standard recursion method [16, 17]. The rather crude mean-field approximation provided
a first insight into the problem of surface magnetism. Because of the typical shortcomings
of mean-field theory, such as the overestimation of the possibility for collective magnetic
order, however, an improved treatment for the many-body problem should be intended. For
the conventional Hubbard model of an infinitely extended lattice with perfect translational
symmetry there are well-established many-body approaches for the weak- [6, 18–21] as
well as for the strong-correlation regime [10, 11, 22–29] which yield explicit and reliable
expressions for the self-energy. Up to now, however, a generalization and application of
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such many-body theories with respect to the Hubbard model for a crystal surface is an
outstanding task. With the present paper we aim at a first step beyond mean-field theory to
describe electron correlations at a crystal surface. For this purpose we will try to generalize
the moment-equating spectral density approach (SDA) [10, 11, 22, 23] to systems with
reduced translational symmetry.

For the usual three-dimensional (d = 3) Hubbard model the SDA has proven its
usefulness in a number of previous applications [10, 11, 22, 23, 30–33]. It can be shown
to be essentially equivalent to the Roth two-pole approximation for the one-particle Green
function [24, 25] and to the Mori–Zwanzig projection method [26–29]. The main advantage
of these methods rests on their simple concept and their non-perturbative character.

Fewer applications of the SDA or the Roth or Mori–Zwanzig method, respectively,
are known for the case of the two-dimensional Hubbard model. Yet, there is interesting
recent work: the quasi-particle band structure for different band-fillings obtained by the
Roth method for thed = 2 case [25] has been compared with the results of quantum
Monte Carlo simulations for the Hubbard model on a 12×12 square array of sites [34, 35].
Remarkable agreement has been found with respect to the dispersion of the quasi-particle
bands. The results of the Mori–Zwanzig projection method for thed = 2 Hubbard model
[29] have been compared with the results of an exact diagonalization study of the Hubbard
model on a 4× 4 array [36]. Qualitative and quantitative agreement is found with respect
to the global features, such as the change of dispersion of the Hubbard bands and spectral
weight transfer between them with varying band-filling. The SDA yields a real self-energy
thereby predicting quasi-particles with infinite lifetime. This has to be considered as a
serious drawback intrinsic to the method. However, as the comparison with the available
rigorous results for small two-dimensional arrays shows [29], theδ-like quasi-particle peaks
as predicted by the SDA almost exactly recover the average dispersion of the lower and of
the upper Hubbard band.

In previous applications of the SDA thek-dependence of the self-energy has been
neglected frequently. Much can be learned in this context from recent work on infinite-
dimensional (d = ∞) lattice models and 1/d perturbation theory [4, 7, 8]. It is one
of the most important results of these studies that for the infinite-dimensional (d = ∞)
Hubbard model the self-energy isk-independent. This means a local self-energy6ijσ (E) =
δij6iσ (E) in Wannier representation. Within a perturbational approach thek-dependent self-
energy for any finite-dimensional case can be obtained by successively including correction
terms of the order(1/d)n for n = 1, 2, . . .. In the Wannier representation for the self-
energy this 1/d approach corresponds to starting from the local term and successively
considering nearest-neighbour, next-nearest-neighbour, etc, correction terms. A convincing
demonstration is given in [4] within the context of second-order perturbation theory inU

for the periodic Anderson model: the 1/d expansion converges even ford = 1. Already for
the d = 2 case corrections beyond nearest-neighbour terms are rather small, and ford = 3
the local approximation for the self-energy is an excellent starting point.

As a first approach we restrict ourselves to a local self-energy for the present study of the
d = 3 semi-infinite Hubbard model. Retaining only the dominating local term of the self-
energy considerably reduces the theoretical effort. We nevertheless believe that the method
is able to give significant insight into the semi-infinite Hubbard model, at least for a band
occupation not too close to half-filling. This is confirmed by comparison with numerically
exact data for small systems again: according to [29, 37] thek-dependence of the self-energy
is predominantly due to local antiferromagnetic correlations. Both an exact diagonalization
study for a ten-site Hubbard ring [29] and the Mori–Zwanzig projection method or the SDA
for the d = 1 Hubbard model [29, 37] show that these antiferromagnetic correlations are
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only significant at and near half-filling in turn. The same is found qualitatively for the
d = 2 case by the Roth method [25] and ford = 3 by the SDA [37], where compared with
d = 2 andd = 1 a generally much weakerk-dependence of the self-energy is observed in
addition.

A brief plan for the following work may be helpful. The first purpose of this paper is
to generalize the SDA of [22] for systems without perfect translational invariance. Thereby
we propose an approximate solution for the many-body problem in the strong-correlation
regime that is applicable to the semi-infinite crystal (section 2). The energy dependence
of the resulting self-energy implies an energy-dependent effective one-particle Hamiltonian,
Heff = Heff(E), and consequently introduces a major complication with respect to the one-
particle problem. The second intention of the present study is thus to show up a possibility
of treating this complication in a computationally efficient way. The recursion scheme that
has been applied successfully in the mean-field study [15] is reformulated for the case of
an energy-dependent Hamiltonian (section 3). We study the implied energy dependence of
the recursion coefficients in detail to develop a numerically feasible interpolation technique
(section 4). Finally, the main results are summarized in section 5.

2. The self-consistent moment approach

All interesting one-particle properties of a system of interacting electrons described within
the framework of the semi-infinite Hubbard model are given in terms of the retarded one-
particle Green function:

Gijσ (E) = −i
∫ ∞

0
e(i/h̄)E(t−t ′)〈[ciσ (t), c

†
jσ (t ′)]+〉 d(t − t ′). (3)

Here [· · · , · · ·]+ denotes the anticommutator, and〈· · ·〉 is the grand canonical average. Since
in the direction normal to the surface the translational symmetry is broken, we use a real-
space rather than ak-space notation:i and j refer to one-particle states well localized at
the respective sites of the semi-infinite lattice. Besides the Green function, the one-particle
spectral density represents another basic quantity. It is given by

Aijσ (E) = − 1

π
Im Gijσ (E + i0+). (4)

The diagonal elements of the spectral density yield the spin- and temperature-dependent
local quasi-particle density of states:

ρiσ (E) = 1

h̄
Aiiσ (E − µ). (5)

From the Heisenberg equation of motion for the time-dependent operators in equation (3)
we can easily derive the following equation of motion for the Green function:

EGijσ (E) = h̄δij +
∑

k

(Tik − µδik + 6ikσ (E))Gkjσ (E). (6)

Hereby we have introduced the electronic self-energy6ijσ (E), which in general is a spin-,
energy- and temperature-dependent complex quantity. All effects of electron correlations
are incorporated in the self-energy. Since the equation of motion for the Green function
is the same for both the original Hubbard HamiltonianH (equation (1)) and the effective
one-particle HamiltonianHeff (equation (2)), we can replaceH by Heff for the calculation
of the Green function. Provided that the self-energy is known, we have to solve an effective
one-particle problem only.
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Our moment method provides an approximate expression for the self-energy. The
method essentially consists of two steps. In the first step we try to find out the general
structure of the self-energy guided by exactly solvable limiting cases, series expansions,
sum rules and other physically plausible arguments, for example. From this we formulate an
ansatzfor the self-energy that will contain a certain number ofa priori unknown parameters.
The self-energy determines via equations (4) and (6) the spectral density and thereby the
moments of the spectral density. The moments are defined by

M
(k)
ijσ = 1

h̄

∫ ∞

−∞
EkAijσ (E) dE k = 0, 1, 2, . . .. (7)

In the second step the parameters in theansatzfor the self-energy are fixed by equating
this expression for the moments of the spectral density with another exact but alternative
representation:

M
(k)
ijσ = 〈[Lkciσ , c

†
jσ ]+〉. (8)

HereLkO = [· · · [O, H ]− · · · , H ]− denotes thek-fold commutator of an operatorO with
the HamiltonianH .

The main idea for this moment method is borrowed from the moment-equating SDA
for an infinitely extended lattice with full translational invariance (see, e.g., [22]). In that
case, Fourier transformation of the spectral density tok-space is possible and appropriate:

Aijσ (E) = 1

N

∑
k

eik·(Ri−Rj )Akσ (E). (9)

Guided by the atomic limit of vanishing Bloch-band widthW , the followingansatzfor the
spectral density ink-space representation could be motivated in [22]:

Akσ (E) = h̄

2∑
j=1

αjσ (k)δ(E − Ejσ (k) + µ). (10)

The quasi-particle energiesEjσ (k) and the spectral weightsαjσ (k) (α1σ (k) + α2σ (k) = 1)
were treated as unknown parameters to be fixed by exploiting the equality between the two
alternative expressions for the moments (7) and (8).

Because of the explicit use of translational symmetry andk-space representation, the
usual SDA cannot be directly applied to systems with reduced symmetry. Moreover, it
is by no means obvious how to formulate a plausibleansatzfor the spectral density in a
real-space representation. For the case of the semi-infinite Hubbard model we therefore turn
to another basic quantity, the self-energy, and try to find a reasonable parametrization for
it.

This ansatzis a key point of the theory. On the one hand is must be general enough to
retain the essential physics of the model. On the other hand, anansatzthat includes more
than a few unknown parameters cannot be handled in practice: the moments (8) needed to
fix the unknowns will soon become very complex with increasing orderk. Here we will
choose the following parametrization for the self-energy:

6ijσ (E) = δijαiσ

E − βiσ

E − γiσ

(11)

where the spin- and site-dependent parametersα, β andγ have to be treated as unknowns.
These constants and thus the self-energy will turn out to be real, i.e. quasi-particle damping
is neglected. Furthermore, we neglected off-diagonal terms in theansatzfor the self-energy
(which corresponds to ak-independent self-energy in the case of an infinitely extended
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periodic lattice). As discussed in the introduction, this implies that ouransatzis restricted
to band-fillings that are not too close to half-filling.

With respect to the energy dependence of6, a look at the atomic Hubbard model
(W = 0) may be helpful. In this case the self-energy can be calculated exactly since the
hierarchy of equations of motion decouples automatically:

6ijσ (E) = δijU〈ni−σ 〉 E + µ − Tii

E + µ − Tii − U(1 − 〈ni−σ 〉) . (12)

The self-energy exhibits a first-order pole which is responsible for the splitting into the two
Hubbard subbands. When the hoppingTij is switched on (W 6= 0), additional satellites will
appear. It can be shown exactly [33] that the spectral weight of these additional satellites
is of the order(W/U)4 or less, being therefore negligible in the strong-correlation regime
U � W . Our one-poleansatzfor the self-energy is thus restricted to strongly correlated
systems only.

As will become clear in the following, theansatz(11) recovers exactly the results of
the above-mentioned SDA [22] in the case of perfect translational invariance. For this
reason we can state that the present formulation represents a straightforward generalization
of the SDA to strongly correlated systems with reduced symmetry. Compared with those
in other approaches [38], a rather simple form for the self-energy has to be assumed here.
We would like to point out, however, that the following calculation is more or less exact.
For the reasons mentioned in the introduction, we believe that this generalized SDA, while
we are aware of its inherent restrictions, can give valuable insight into the semi-infinite
Hubbard model.

To develop the theory up to the point where the numerical evaluation has to start, we
first derive from equation (8) the moments that will be necessary to fix the parameters in
the ansatz(11). The expression for the first moment (k = 0) only reflects the normalization
of the spectral density. For the three unknownsα, β andγ we therefore need the first four
moments (k = 0, . . . , 3). Writing T̃ij = Tij − µδij for brevity, we obtain after a tedious but
straightforward calculation:

M
(0)
ijσ = δij

M
(1)
ijσ = T̃ij + δijU〈ni−σ 〉

M
(2)
ijσ =

∑
k

T̃ikT̃kj + UT̃ij (〈ni−σ 〉 + 〈nj−σ 〉) + δijU
2〈ni−σ 〉 + R

(1)
ij−σ

M
(3)
ijσ =

∑
kl

T̃ikT̃kl T̃lj + U
∑

k

T̃ikT̃kj (〈ni−σ 〉 + 〈nj−σ 〉 + 〈nk−σ 〉)

+ U2T̃ij (〈ni−σ 〉 + 〈nj−σ 〉 + 〈ni−σ 〉〈nj−σ 〉)
+ U2〈ni−σ 〉(1 − 〈ni−σ 〉)Bij−σ + δijU

3〈ni−σ 〉 + R
(2)
ij−σ .

(13)

The ‘band correction’Bij−σ is a correlation function of higher order:

〈ni−σ 〉(1 − 〈ni−σ 〉)Bij−σ = δijB
(S)
i−σ + B

(W)
ij−σ + δij T̃ii〈ni−σ 〉. (14)

The ‘band shift’B(S)
i−σ is most decisive, especially as regards the possibility of spontaneous

magnetic order [22]:

B
(S)
i−σ =

∑
k

(T̃ik〈niσ c
†
i−σ ck−σ 〉 + T̃ki〈niσ c

†
k−σ ci−σ 〉 − T̃ki〈c†

k−σ ci−σ 〉). (15)

The ‘band-width correction’

B
(W)
ij−σ = T̃ij (〈ni−σ nj−σ 〉 − 〈ni−σ 〉〈nj−σ 〉 − 〈c†

jσ c
†
j−σ ci−σ ciσ 〉 − 〈c†

jσ c
†
i−σ cj−σ ciσ 〉) (16)
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splits up into four terms. The first two, which represent density correlations between two
sites, obviously disappear within a mean-field approach. The third term describes double
hopping from site to site and the fourth expresses spin exchange between electrons on
different sites. Both the third and the fourth term are spin independent. With respect to the
possibility of magnetic order,B(W)

ij−σ is not that important [22]. For simplicity we retain the

local term ofB(W)
ij−σ only:

B
(W)
ij−σ ≈ δijB

(W)
ii−σ . (17)

It should be mentioned that this approximation is necessary to be consistent with our local
ansatz(11) for the self-energy. It is known that just the inclusion of off-diagonal elements
in B

(W)
ij−σ leads to non-local terms in the self-energy (which are small for band-fillings not

too close to half-filling) [29, 37].
Apart from the band correction and from expectation values for the occupation-number

operators〈ni−σ 〉, there are some off-diagonal one-particle correlation functions which are
all included in the following definitions:

R
(1)
ij−σ = δijU

∑
k

(T̃ik〈c†
i−σ ck−σ 〉 − T̃ki〈c†

k−σ ci−σ 〉)

R
(2)
ij−σ = UT̃ij

∑
k

(T̃ik〈c†
i−σ ck−σ 〉 − T̃ki〈c†

k−σ ci−σ 〉).
(18)

To simplify these expressions, we choose an orthonormal basis consisting ofreal functions
|iσ 〉 within the framework of second quantization. From this one-particle basis we can
straightforwardly construct a real basis of the many-particle Fock space, in which the
operatorsc†

iσ and ciσ are represented by real matrices. We furthermore notice that the
eigenstates of the HamiltonianH can always be chosen to be real vectors in that basis
sinceH is Hermitian. Remembering the definition of the grand canonical average, we can
therefore take the matrix elements〈c†

iσ cjσ 〉 to be real (even fori 6= j ). We thus have

〈c†
iσ cjσ 〉 = 〈c†

iσ cjσ 〉∗ = 〈c†
jσ ciσ 〉. (19)

Furthermore, within the real basis{|iσ 〉} the hopping integrals are real:Tij = T ∗
ij = Tji .

This implies

R
(1)
ij−σ = R

(2)
ij−σ = 0. (20)

The crucial point of our method is that all correlation functions that appear in the
expression (8) for the moments can be derived exactly from the one-particle spectral density
Aijσ (E). This guarantees a closed set of equations. Using the relation (19), we get from
equations (14)–(17)

〈ni−σ 〉(1 − 〈ni−σ 〉)Bij−σ = δij T̃ii〈ni−σ 〉(1 − 〈ni−σ 〉) + δij

∑
k 6=i

T̃ik〈c†
i−σ ck−σ (2niσ − 1)〉.

(21)

All in all we thus have two types of correlation function that have to be determined:

〈c†
i−σ cj−σ 〉

〈c†
i−σ cj−σ niσ 〉.

(22)

Using the general spectral theorem [39], the one-particle correlation functions are given by

〈c†
i−σ cj−σ 〉 = 1

h̄

∫ ∞

−∞
f (E)Aji−σ (E − µ) dE (23)
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wheref (E) is the Fermi function:

f (E) = 1

eβ(E−µ) + 1
. (24)

In the following we show that the higher-order correlation functionBij−σ can also be
expressed in terms of the spectral density. With the help of the commutator

[H, c
†
i−σ ]− =

∑
k

T̃kic
†
k−σ + Uc

†
i−σ niσ (25)

the second expectation value in (22) can be written in the form

〈c†
i−σ cj−σ niσ 〉 = − 1

U

∑
k

T̃ki〈c†
k−σ cj−σ 〉 + 1

U
〈[H, c

†
i−σ ]−cj−σ 〉. (26)

The first term, being a sum of one-particle correlation functions, can be handled by
the spectral theorem (equation (23)). Applying once more the general spectral theorem,
performing a Fourier transformation to time representation, using the Heisenberg equation
of motion for time-dependent operators and integrating by parts, the following equation for
the second term can be derived:

〈[H, c
†
i−σ ]−cj−σ 〉 = 1

2πh̄

∫ ∞

−∞
f (E + µ)

×
∫ ∞

−∞
e(i/h̄)E(t−t ′)

(
−ih̄

∂

∂t ′

)
〈[cj−σ (t), c

†
i−σ (t ′)]+〉 d(t − t ′) dE

= 1

h̄

∫ ∞

−∞
f (E + µ)EAji−σ (E) dE. (27)

Combining the results, we have for the band correction

〈ni−σ 〉(1 − 〈ni−σ 〉)Bij−σ = δij T̃ii〈ni−σ 〉(1 − 〈ni−σ 〉) + δij

1

h̄

∫ ∞

−∞
f (E + µ)

×
∑

k

(T̃ik − δikT̃ii )
∑

l

(
2

U
[Eδil − T̃il ] − δil

)
Akl−σ (E) dE. (28)

This can be transformed into a more compact and elegant expression which also avoids the
double lattice sum, when using the relation∑

k

(Eδik − T̃ik − 6ikσ (E))Akjσ (E) = 0 (29)

which is easily deduced from the equation of motion (6) and from (4) for a real energyE

and a real self-energy6ijσ (E). Since the self-energy is site diagonal, we finally arrive at

〈ni−σ 〉(1 − 〈ni−σ 〉)Bij−σ = δij T̃ii〈ni−σ 〉(1 − 〈ni−σ 〉) + δij

1

h̄

∫ ∞

−∞
f (E + µ)

×(E − 6ii−σ (E) − T̃ii )

(
2

U
6ii−σ (E) − 1

)
Aii−σ (E) dE. (30)

This completes the general theory, since now the parameters in theansatzfor the self-
energy can be determined from the closed set of equations (4), (6), (7), (11), (13), (20),
(23) and (30). Generally, an analytical solution is not possible, and the parameters have
to be calculated numerically. This can be done, for example, by minimizing the following
function with respect toαiσ , βiσ andγiσ :

G(. . . , αiσ , βiσ , γiσ , . . .) =
∑
iσ

3∑
k=1

(
1

h̄

∫ ∞

−∞
EkAiiσ (E) dE − 〈[Lkciσ , c

†
iσ ]+〉

)2
!= min.

(31)
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For the semi-infinite Hubbard model we can assume perfect translational symmetrywithin
layers parallel to the surface. This implies spatially constant parameters within each layer
(e.g. αiσ = αjσ for sites i and j belonging to the same layer). For this reason it is
sufficient to considerG as a function of the inequivalent parameters for different layers
only. At a sufficiently large distance from the surface the parameters will tend to their
bulk values. Therefore, only a finite number of non-equivalent parameters have to be
determined, and the sum overi actually extends over the relevant surface layers only.
Since the two alternative representations of moments are equivalent, the minimum ofG

should be zero. A different minimum value in the calculation would indicate that the
ansatz for the self-energy was not sufficiently general to fulfil the constraints resulting
from the equivalence between the moments’ representations. It may also happen that there
is more than one zero ofG which indicates a solution to be not unique. Experience
with the SDA for an infinitely extended system shows that different solutions can be
obtained representing different magnetic structures (paramagnetism, ferromagnetism and
antiferromagnetism). Moreover, in a certain range of the Coulomb interaction and the band-
filling the existence of more than one ferromagnetic solution has been observed [22]. In
such cases the most stable solution can be determined by calculating the respective internal
energyE0 = 〈H 〉 or, for T 6= 0, the free energyF(T ), which both can be expressed in
terms of the one-particle spectral density [15].

For the special case of an infinitely extended lattice the determination of the parameters
can be performed analytically, and there is no need to introduce the functionG. Following
strictly along the lines of [10, 11, 22, 23, 29], we finally obtain the following result:

αiσ = U〈n−σ 〉
βiσ = B−σ − µ

γiσ = B−σ − µ + U(1 − 〈n−σ 〉).
(32)

Due to translational invariance the expectation values become site independent:〈ni−σ 〉 =
〈n−σ 〉 and Bii−σ = B−σ . Inserting this result into equation (11) one exactly recovers the
self-energy of the SDA. As mentioned above, we can therefore conclude that the moment
method presented is a straightforward generalization of the SDA for systems with reduced
(translational) symmetry.

Finally, we would like to present a somewhat simplified version of the theory, which
yields an analytical expression for the self-energy also for the case of reduced symmetry:
we think the semi-infinite crystal to be built up from layers parallel to the surface. For the
explicit determination of the self-energy we assume the hopping between different layers
to be switched off for the time being. This means that in a sense we treat the individual
layers separately at this stage. Since each layer represents a subsystem with perfect (two-
dimensional) translational invariance, we can apply the moment method to the rest of the
Hamiltonian ending up with the result (32) holding separately for each layer. We do not
exclude, however, variations of the parametersαiσ , βiσ andγiσ from layer to layer:

αiσ = U〈ni−σ 〉
βiσ = Bii−σ − µ

γiσ = Bii−σ − µ + U(1 − 〈ni−σ 〉).
(33)

Here i labels the different layers. Within each layer the parameters are site independent.
Inserting into theansatz(11) yields the final formula for the self-energy:

6ijσ (E) = δijU〈ni−σ 〉 E + µ − Bii−σ

E + µ − Bii−σ − U(1 − 〈ni−σ 〉) . (34)
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The crucial point of the procedure is that the expectation values〈ni−σ 〉 and Bii−σ are to
be determined within thefull model (1), i.e. from the relations (23) and (30), whereby the
inter-layer hopping is reintroduced. Since the local self-energy in the form (34) depends
on the average occupation number at the same site and on the band correction at the same
site only, the procedure described may be considered a ‘local approximation’. The term
refers to the local approximation frequently employed in weak-coupling theories (see [20]
for a discussion). In the context of the SDA the local approximation has been tested and
successfully applied for treating antiferromagnetic structures [11].

The most essential point of the moment method presented here is theansatzfor the
self-energy, for which the motivation has been given above. The subsequent calculation,
however, is practically exact. The local approximation is not a necessary part of the method
but considerably reduces the effort required in the numerical evaluation. A major advantage
of the method rests on the simplicity of the idea and of the final result which allows for
investigating systems with a complex geometric or magnetic structure. The moment method
yields a spin- and temperature-dependent self-energy for each layer parallel to the surface
as well as spin-, temperature- and layer-dependent local occupation numbers. From these
we can calculate the layer-dependent magnetization and the charge transfer between the
layers and the dependencies of these quantities on the model parameters, namely the on-
site Coulomb interactionU , the band-filling〈n〉 and the temperatureT . Effects of strong
electron correlations can thus be studied in detail for a crystal surface. We have to bear in
mind, however, that a self-consistent numerical evaluation of the theory inevitably requires
an appropriate method for solving the equation of motion (6) for the Green function. This
problem is tackled in the next section.

3. The energy-dependent recursion method

The conventional tight-binding recursion method provides a computationally efficient way to
determine the Green function from its equation of motion within real-space representation.
Therefore, the method is ideally suited for treating systems with reduced translational
symmetry, such as solid surfaces, defects or clusters. The method and its applications
to the electronic structure of solids are outlined in [16, 17]. Actually, the recursion method
applies to a one-particle Hamiltonian and is commonly not used to deal with many-body
interactions. In the present context, however, all correlation effects are incorporated in the
self-energy. Within the framework of an independent-particle model, the self-energy can be
interpreted as a non-local, energy-dependent and complex potential. As will be shown we
can use the recursion scheme for theeffectiveone-particle Hamiltonian in equation (2) that
includes this generalized potential.

The essential points in the calculation are sketched briefly in the following. The
idea is rather simple: the equation of motion (6) holds separately for each energyE.
To obtain the Green functionGijσ (E) at a particular energyE, we have to apply the
usual recursion method to the Hamiltonian that is given by evaluating the self-energy at
energyE: Heff = Heff(E). For each energy a transformation can be constructed so that
Heff(E) becomes tridiagonal. Once the Hamiltonian is transformed into tridiagonal form,
the diagonal elements of the Green function can be easily expressed as an infinite continued
fraction:

Giiσ (E) = G
(0)
iσ (E)

G
(k)
iσ (E) = h̄

E + i 0+ − a
(k)
iσ (E) − (b

(k+1)
iσ (E))2 G

(k+1)
iσ (E)/h̄

k = 0, 1, 2, . . ..
(35)
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According to equations (4) and (5), we then get the local quasi-particle density of states
(LDOS) at the sitei and for spin directionσ . The energy-dependent recursion coefficients
a

(k)
iσ (E) and b

(k)
iσ (E) represent the diagonal and the first off-diagonal elements of the

transformed Hamiltonian, respectively. For each energyE they can be calculated iteratively
for a given sitei and spin directionσ . Let |iσ 〉 = c

†
iσ |vac〉 denote the local orbital at site

i and with spin indexσ . Choosing|u0, iσ 〉 = |w0, iσ 〉 = |iσ 〉 for the starting orbital, the
recursion coefficients are given by the following recurrence relations:

a
(0)
iσ (E) = 〈w0, iσ | Heff(E) |u0, iσ 〉

b
(1)
iσ (E)2 = 〈w0; iσ |(Heff(E) − a

(0)
iσ (E))2|u0; iσ 〉

|u1; Eiσ 〉 = 1

b
(1)
iσ (E)

(Heff(E) − a
(0)
iσ (E))|u0; iσ 〉

|w1; Eiσ 〉 = 1

b
(1)
iσ (E)∗

(H
†
eff(E) − a

(0)
iσ (E)∗)|w0; iσ 〉

(36)

and fork > 1:

a
(k)
iσ (E) = 〈wk; Eiσ | Heff(E) |uk; Eiσ 〉

b
(k+1)
iσ (E)2 = [〈wk; Eiσ |(Heff(E) − a

(k)
iσ (E)) − 〈wk−1; Eiσ | b(k)

iσ (E)]

× [(Heff(E) − a
(k)
iσ (E))|uk; Eiσ 〉 − b

(k)
iσ (E) |uk−1; Eiσ 〉]

|uk+1; Eiσ 〉 = 1

b
(k+1)
iσ (E)

((Heff(E) − a
(k)
iσ (E))|uk; Eiσ 〉 − b

(k)
iσ (E) |uk−1; Eiσ 〉)

|wk+1; Eiσ 〉 = 1

b
(k+1)
iσ (E)∗

((H
†
eff(E) − a

(k)
iσ (E)∗)|wk; Eiσ 〉 − b

(k)
iσ (E)∗ |wk−1; Eiσ 〉).

(37)

One easily verifies that the recurrence relations (36) and (37) lead to two sets of states
{|uk; Eiσ 〉}k=0,...,∞ and{|wk; Eiσ 〉}k=0,...,∞ that are bi-orthonormal:

〈wk; Eiσ |ul; Eiσ 〉 = δkl (38)

and satisfy the closure relation∑
k

|uk; Eiσ 〉〈wk; Eiσ | = 1 (39)

for each energyE. Furthermore, with equations (36)–(39) we can proveHeff(E) to be
tridiagonal, i.e.:

〈wk; Eiσ | Heff(E) |uk; Eiσ 〉 = a
(k)
iσ (E)

〈wk+1; Eiσ | Heff(E) |uk; Eiσ 〉 = 〈wk; Eiσ | Heff(E) |uk+1; Eiσ 〉 = b
(k)
iσ (E)

(40)

for all k > 0 and all other matrix elements ofHeff(E) to be zero. If the self-energy is
real, as is the case for the moment method presented, the effective one-particle Hamiltonian
Heff(E) is Hermitian,H †

eff(E) = Heff(E). This simplifies the calculation to some extent
since we have|uk; Eiσ 〉 = |wk; Eiσ 〉, anda

(k)
iσ (E) andb

(k)
iσ (E) are real numbers.

4. Results and discussion

To demonstrate its applicability, we have evaluated the theory for the (100) surface of a bcc
crystal which serves as a model surface for the present study. Since the recursion scheme
is most efficient in the case of a tight-binding model, we restrict ourselves to on-site and
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nearest-neighbour hopping only:T0 = Tii defines the energy zero,T1 = Tij for nearest
neighboursi and j is fixed atT1 = 1 eV. This implies a width ofW = 2z

(B)

1 T1 = 16 eV
for the free bulk Bloch density of states.z(B)

1 = 8 is the bulk coordination number. For
atoms within the topmost surface layer the coordination number is reduced toz

(S)

1 = 4.
We consider a strongly correlated paramagnetic electron system withU = 2W at zero
temperature,T = 0. The chemical potentialµ will be chosen to yield a quarter-filled
LDOS in the bulk,〈n〉 = 〈ni↑〉 + 〈ni↓〉 = 0.5.

The actual calculation proceeds as follows. Before solving the model for the crystal
surface, we have to consider the bulk. Making use of translational symmetry, i.e. taking
〈niσ 〉 = 〈nσ 〉 = 〈n〉/2 and Biiσ = Bσ = B−σ , equations (4), (23), (30), (34)–(37) are
solved self-consistently for the expectation values〈nσ 〉 andBσ and the chemical potential
µ. These quantities can be held constant for the subsequent calculation that includes the
crystal surface. For the semi-infinite system we take the form (34) for the local self-
energy, and translational symmetry is assumed to hold only within layers parallel to the
(100) surface. The layer-dependent occupation numbers〈niσ 〉 and the layer-dependent band
correctionsBiiσ are determined self-consistently forL inequivalent layers parallel to the
surface [40]. We take into account as many surface layersL as necessary to ensure that
〈niσ 〉 andBiiσ approach their bulk values smoothly.

For the numerical evaluation of the theory we consider a cluster consisting of a finite
number of sitesN instead of the semi-infinite system. This implies a finite dimension of the
one-particle Hilbert space and thus of the vectors and matrices in equations (36) and (37).
The LDOS for each of theL inequivalent surface layers and the bulk LDOS are calculated
at sites that have maximum distances from the cluster boundary. At these sites the cluster
LDOS can be expected to resemble best the LDOS of the semi-infinite system. For the
finite cluster the continued fraction (35) must terminate at some levelk = k0 6 N , which
results in a LDOS consisting of a finite number of weightedδ-peaks at different energies.
To approximate the LDOS of the semi-infinite system, the cluster LDOS is convoluted with
a Lorentzian and a Gaussian profile. Lorentz convolution is performed by replacing the
infinitesimal i0+ in equation (35) by i0 where0 is a small positive number. This allows
for using a discrete energy mesh in the calculation. After that the LDOS is smeared out
by convoluting with a Gaussian profile with a full width at half-maximumα. A major
advantage of this convolution procedure is that actually it is sufficient to determine only
a rather small number of recursion coefficients up toK � k0: taking into account more
coefficients does not change the LDOS at all. It turns out that for the semi-infinite system
the procedure yields the exact but smoothed LDOS ofHeff(E) [15]. The following results
have been calculated for0 = W/200 andα = W/20. For this choice a cluster of about
N = 7500 sites and a recursion depth ofK = 40 are sufficient.L = 10 inequivalent surface
layers are taken into account. The energy-dependent recursion coefficients are calculated on
a discrete energy mesh that is sufficiently fine with respect to convergence of the integrals
in equations (23) and (30).

In the following we will discuss the results for the recursion coefficients that have been
determined from a self-consistent calculation for the parameters given above. In particular,
we focus on the energy dependence of the coefficients which is due to the energy dependence
of the self-energy and thus due to correlation effects. Let us start with the zeroth-level
(k = 0) coefficienta(0)

iσ (E) which is shown in figure 1 for the topmost surface layer and
for the bulk. From equation (36) we immediately derivea

(0)
iσ (E) = Tii − µ + 6iiσ (E): the

zeroth recursion coefficient directly reflects the energy dependence of the local self-energy
(34). It therefore exhibits a first-order pole atE = Biiσ − µ + U(1 − 〈niσ 〉). Due to the
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Figure 1. The zeroth-level (k = 0) recursion coefficienta(0)
iσ as a function of energy for the

bulk and for the topmost surface layer of the (100) surface of a bcc crystal. The solid and the
dashed vertical lines indicate the energetic position of the first-order pole ofa

(0)
iσ (E) for the

bulk and the first layer, respectively.µ is the chemical potential andW the width of the free
bulk Bloch density of states. The results are from a self-consistent calculation for a paramagnet
with an on-site Coulomb interactionU/W = 2, and band-filling〈n〉 = 0.5 at zero temperature.
Additional parameters of the calculation:0 = W/200,α = W/20, L = 10, N ≈ 7500,K = 40
(see the text).

layer dependence of the expectation values〈niσ 〉 and Biiσ , the energetic position of this
pole varies from layer to layer. The strongest deviation from the bulk position has been
found for the topmost surface layer. The deviation mainly results from the change of the
band correction (Biiσ /W = 0.248 in the bulk,Biiσ /W = 0.176 in the first layer; see also
figure 6 below).

The first-level recursion coefficientb(1)
iσ (E) is given byb

(1)
iσ (E) =

√
z

(i)

1 T1 wherez
(i)

1 is
the coordination number of the lattice sitei. The coefficient is thus energetically constant
and differs from its bulk value only for the sites of the topmost surface layer which have a
reduced coordination number.

An easy analysis of the energy dependence of the recursion coefficients is also possible
for those sitesi that have a sufficiently large distance from the surface. In this case we can
assume the expectation values〈niσ 〉 andBiiσ and thus the self-energy to be site independent.
Expanding the states|uk; Eiσ 〉 in the local basis orbitals|jσ 〉 = c

†
jσ |0〉,

|uk; Eiσ 〉 =
∑

j

α
(k)

j ;Eiσ |jσ 〉
∑

j

|α(k)

j ;Eiσ |2 = 1 (41)

and inserting into equations (36) and (37), the recursion coefficienta
(k)
iσ (E) is proven to

have the form:

a
(k)
iσ (E) =

∑
j

|α(k)

j ;Eiσ |2(T0 − µ + 6jjσ (E)) +
∑
j 6=j ′

(α
(k)

j ;Eiσ )∗Tjj ′α
(k)

j ′;Eiσ . (42)

For k = 0 the operatorHeff(E) − a
(k)
iσ (E) is energy independent in the bulk, since

a
(0)
iσ (E) = Tii − µ + 6iiσ (E) = T0 − µ + 6σ(E) exactly cancels the energy dependence of

the diagonal elements ofHeff(E), while due to the localansatz(11) for the self-energy the
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off-diagonal elements ofHeff(E) are energy independent anyway. From equation (36) we
then deduce thatb(1)

iσ (E) and |u1; Eiσ 〉 and thus, following equation (41), all coefficients
α

(1)

j ;Eiσ are independent of energy, too. Using equation (37) and similar arguments, this can

be shown by full induction to hold for allk: from the energy independence ofα
(k)

j ;Eiσ for a
certaink > 1 we can conclude that|uk; Eiσ 〉 must be energy independent. Furthermore,
equation (42) shows thata(k)

iσ (E) = T0 − µ + 6σ(E) + constant in the bulk, which implies
that Heff(E) − a

(k)
iσ (E) does not depend onE. Therefore,b(k+1)

iσ (E) and |uk+1; Eiσ 〉 and
thus all coefficientsα(k+1)

j ;Eiσ are independent of energy. To conclude, for all sitesi in the

crystal volume, the energy dependence of the recursion coefficientsa
(k)
iσ (E) andb

(k)
iσ (E) is

rather simple: the energy dependence ofa
(k)
iσ (E) just reflects the energy dependence of the

self-energy for allk, while b
(k)
iσ (E) is a constant for eachk.
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Figure 2. Zeroth-level recursion coefficientsa(0)
iσ for the first (dotted line) and the third layer

(dashed line) from the surface and first-level coefficientsa
(1)
iσ (solid line) andb

(2)
iσ (solid line,

second panel) for the second layer from the surface as functions of energy.

For the surface layers, however, the energy dependence of the recursion coefficients is
not that simple. The upper panel of figure 2 shows the zeroth-level recursion coefficient
a

(0)
iσ (E) for the first and for the third layer from the surface and the first-level coefficient

a
(1)
iσ (E) for the second layer. As has been discussed above, the energy dependence of

the zeroth-level coefficients is simply given by the energy dependence of the local self-
energy. Due to the layer-by-layer variations of〈niσ 〉 andBiiσ , the location of the pole of
a

(0)
iσ (E) is different comparing the first with the third layer. The first-level coefficient for the

second layer from the surface, however, exhibits a more complicated energy dependence
(see figure 2). It shows up two poles, the energetic positions of which coincide with the
positions of the poles of the zeroth-order coefficients for the first and the third layer. This
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can be explained by considering once more equations (36) and (37). Ifi denotes a site
within the second layer, we have

|u1, Eiσ 〉 = 1√
8

∑
j

|jσ 〉 (43)

where the sum extends over all nearest-neighbour sitesj , i.e. over four sites within the first
and over four sites within the third layer. This implies

a
(1)
iσ (E) = 1

8

∑
j

〈jσ |Heff(E)|jσ 〉 = 1

8

∑
j

(T0 − µ + 6jjσ (E)). (44)

The first-level coefficienta(1)
iσ (E) for the second layer is thus given by the arithmetic mean

of the zeroth-level coefficients for the first and the third layer. As a consequence of the two-
pole structure ofa(1)

iσ (E), the second-level coefficientb(2)
iσ (E) for the second layer shows up

two singularities at the related energetic positions (see figure 2, lower panel).
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Figure 3. Recursion coefficientsb(k)
iσ for the third layer from the surface and fork = 2, . . . , 5

as functions of energy.
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The example discussed above indicates that in the vicinity of the surface the energy
dependence of the recursion coefficients tends to become more and more complicated when
higher levelsk are considered. This is corroborated by figure 3, where the coefficients
b

(k)
iσ (E) for the third layer from the surface are shown fork = 2, . . . , 5. The first-level

coefficient is constant,b(1)
iσ (E) = √

8T1. The energetic positions of the poles of the local self-
energies for the second and the fourth layer differ very slightly from each other. Therefore,
contrasting with the case for the second layer, the second coefficient (k = 2) for the third
layer shows only one strong maximum. For the higher recursion levels, however, rather
complex peak structures and singularities come into existence. We notice that the main
peaks are located in the energy range between(E − µ)/W = 1.6 and(E − µ)/W = 1.9.
On the other hand, due to the form of the self-energy (34), the quasi-particle density of
states is expected to split up into two parts for the strongly correlated system (U/W = 2.0):
for 〈n〉 = 0.5 the lower Hubbard band lies around the Fermi level while the upper Hubbard
band is located at energies∼U/W above the Fermi level. The main peaks will thus be
located in the Hubbard gap.

In figure 4 we take a closer look at the recursion coefficients in an energy range where a
non-vanishing quasi-particle density of states is expected. Between(E−µ)/W = −0.5 and
(E −µ)/W = 0.5 the recursion coefficients do not differ very much from their bulk values.
In figure 4 we have thus shown the differences between the coefficients for a given layer
and the corresponding bulk coefficients. The differences between the fifth-level coefficients
1a

(5)
iσ (E) for surface and bulk and the related differences between surface and bulk sixth-

level coefficients1b
(6)
iσ (E) are given for the first nine layers from the surface as functions of

energy. Let us concentrate on the coefficientsa
(5)
iσ (E) first. For all surface layers considered,

the energy dependence slightly differs from theE−1-behaviour of the bulk coefficient. The
largest differences are observed for the topmost surface layer and the second layer. The
differences from the bulk coefficient become smaller and smaller with increasing distance
to the surface. In the bulk the coefficientb

(6)
iσ (E) is energetically constant. Therefore, the

differences1b
(6)
iσ (E) shown in the lower panel of figure 4 reflect the true energy dependence

of the coefficients. The energy dependence is most pronounced for the first and the second
layer, and becomes weaker and weaker with increasing distance to the surface. Already for
the fourth and all subsequent layers there is hardly any energy dependence. However, for the
first six layers from the surface there are significant differences from the bulk value. While
the energy dependence exclusively results from correlation effects, this layer dependence
is also observed for the ‘free’ (U = 0) system. It reflects the effects of the reduced
coordination number of sites at the very surface on the electronic structure. Equations (36)
and (37) show that for the calculation ofb

(6)
iσ (E) only those local basis orbitals|jσ 〉 need

to be considered that belong to a cluster of sitesj that can be reached by six or fewer
nearest-neighbour hoppings from sitei. For this reason there is no direct influence of the
surface on the sixth-level coefficientb

(6)
iσ (E) for the seventh and all subsequent layers, and

apart from a very slight energy dependence (which is not visible on this scale) the coefficient
has approached its bulk value. The example given by figure 4 shows that it is possible to
distinguish between effects of electron correlations and effects due to the presence of the
surface in the analysis of the recursion coefficients.

Figure 5 shows the layer-dependent quasi-particle density of states (LDOS) for the first
five layers from the surface and the bulk quasi-particle density of states. We first discuss the
bulk LDOS. Due to the first-order pole of the self-energy (34), the free Bloch band splits up
into two quasi-particle subbands in the strong-correlation regime. Both the lower and the
upper Hubbard band show themselves in the LDOS. The separation between the lower and
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Figure 4. The difference between a recursion coefficienta
(k)
iσ (b(k)

iσ ) for the ith layer from the

surface and the recursion coefficienta
(k)
σ (b(k)

σ ) for the bulk as a function of energy. Results for
the recursion depthk = 5 (k = 6) and for the first nine layersi = 1, . . . , 9 are indicated in the
figure.

the upper part of the LDOS is approximately given byU . For quarter-filling (〈n〉 = 0.5) the
main part of the spectral weight is concentrated in the lower part around the Fermi energy;
the upper part has to be interpreted as a correlation satellite. The electron correlation results
in a band narrowing; the width of the lower part amounts toWl/W ≈ 0.85. Because of the
slight Gaussian and Lorentzian broadening of the LDOS, a more exact determination of the
band edges is difficult.

The shape of the LDOS for the surface layers significantly differs from the shape of the
bulk LDOS. For each surface layer the LDOS splits up into a lower and an upper Hubbard
part. As discussed above, the energetic position of the first-order pole of the local self-
energy varies from layer to layer. This layer dependence, however, does not manifest itself
in a rigid shift of the LDOS for each of the surface layers. Instead, the layer dependence
affects the shape of the LDOS and results in a transfer of spectral weight. The rather
large energetic difference between the pole positions for the first and the second layer, for
example, leads to different centres of gravity of the upper parts of the LDOS for the first and
the second layer. The edges of each surface-layer LDOS coincide with the related edges of
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Figure 5. The local quasi-particle density of states for the first five layers from the (100)
surface of a bcc crystal and bulk quasi-particle density of states as functions of energy. For the
parameters of the calculation, see figure 1.

the bulk LDOS; the layer-by-layer variations are not so pronounced as to result in split-off
states. Therefore, we also observe the same above-mentioned narrowing of the lower part
of the LDOS at the surface. For the first layer, however, there is an additional effective
narrowing of the lower (and of the upper) Hubbard part of the LDOS. Compared with the
case for the bulk, the mean deviation from the centre of gravity is strongly reduced for the
lower part of the top-layer LDOS; the lower part of the LDOS is much more ‘compressed’.
This effective narrowing is due to the reduced coordination number for sites in the topmost
layer (cf. [15]). Compared with the bulk LDOS, the LDOS for the layers near the surface
is considerably distorted. The shape of the top-layer LDOS exhibits the most significant
changes with respect to the bulk. In the calculation ten surface layers have been included. It
turns out that already the LDOS for the fifth and for all subsequent surface layers resemble
the bulk LDOS rather well. The LDOS of the tenth layer can no longer be distinguished
from the LDOS in the bulk within numerical accuracy.

The convergence of the surface-layer LDOS to the bulk LDOS with increasing distance
from the surface implies the convergence of all integral quantities that are derived from
the LDOS. This is demonstrated in figure 6 where the expectation values〈niσ 〉 and
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Figure 6. The local average occupation number〈niσ 〉 and local band correctionBiiσ for the first
ten layers parallel to the (100) surface of a bcc crystal (layer 1 means the topmost surface layer).
The bulk values〈nσ 〉 andBσ are shown additionally. For the parameters of the calculation, see
figure 1.

Biiσ are shown for each of the ten surface layers and for the bulk. We notice that
near the surface the average occupation number〈niσ 〉 oscillates around its bulk value
〈nσ 〉 = 0.25. With increasing distance to the surface the damping of the oscillations
becomes stronger, and eventually the layer-dependent occupation number becomes constant
and reaches its bulk value. Generally, the charge transfer associated with the oscillations in
〈niσ 〉 is rather small: the strongest charge transfer is observed for the second layer, where
2〈niσ 〉−2〈nσ 〉 = 〈ni〉−〈n〉 = 0.022. Also the band correctionBiiσ slightly oscillates around
and finally converges to its bulk value (see figure 6). For the topmost surface layer, however,
the band correction is strongly reduced. The result indicates that the band correction is rather
sensitive to surface correlation effects. This may have interesting consequences for surface
magnetism in the semi-infinite Hubbard model, since the band correction is very decisive
as regards the possibility of spontaneous magnetic order.

At this point we would like to stop discussing of the results. A detailed and more
systematic analysis of surface correlation effects and surface magnetism is beyond the scope
of this study and will appear in a forthcoming paper. Our main intention was to demonstrate
that a numerical evaluation of the theory is possible. Finally, we thus turn to the question
of a computationally efficient evaluation once more. The main idea as regards tackling the
one-particle problem posed byHeff was to apply the recursion technique, since the method
is ideally suited for treating systems with reduced translational symmetry. The energy
dependence of the self-energy, however, implies an energy-dependent effective Hamiltonian
Heff = Heff(E), and thus it seems that the recursion scheme must be applied for each energy
E out of an energy mesh that is sufficiently fine to guarantee the necessary convergence
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of energy integrals that involve the LDOS. The results presented in figures 2 and 3 and
their discussion have shown that the layer-by-layer variations of the energetic location of
the first-order pole in the layer-dependent self-energy may lead to a rather complex energy
dependence of the recursion coefficients. In particular, this holds for the higher levels and
in the vicinity of the surface. The complicated structures in the energy-dependent recursion
coefficients, however, are confined in the Hubbard gap. Therefore, they are not significant
at all as regards the calculation of the imaginary part of the local Green function and
thus of the LDOS. In that energetic range where there is a non-vanishing LDOS, a quite
smooth and monotonic energy dependence of the recursion coefficients has been observed
(see figure 4 for the lower Hubbard part of the LDOS; for the upper part we obtained
similar results). For this reason an interpolation of the energy dependence of the recursion
coefficients within that energy range is worth the effort to circumvent the computationally
rather time-consuming application of the recursion scheme for each energy. We have tested
this idea and applied a simple third-order spline interpolation technique. In the relevant
energy ranges (at sufficiently large energetic distances from the poles of the layer-dependent
self-energy) all recursion coefficientsa(k)

iσ (E) and b
(k+1)
iσ (E) for k = 0, . . . , 40 have been

determined on a very sparse energy mesh only. After that the energy dependence of the
coefficients has been interpolated to yield smooth functions of energy which are inserted
in the continued-fraction representation (35) of the Green function to determine the LDOS.
To give an example, about ten energy points in the sparse mesh within the range of the
upper and the lower Hubbard band each are completely sufficient for recovering the exact
results obtained without interpolation. A spline interpolation of the coefficients is thus very
profitable from the numerical point of view. Indeed, it seems to be inevitable for future
systematic studies of the dependencies of the results on important model parameters, such
as the on-site Coulomb interactionU , the band-filling〈n〉 and the temperatureT .

5. Concluding remarks

We have presented a moment approach and an energy-dependent recursion method for
investigating effects of electron correlations in the semi-infinite Hubbard model. Neglecting
a possible quasi-particle damping, a localansatzfor the layer-dependent electronic self-
energy could be motivated for the strong-correlation regimeU/W � 1. The a priori
unknown layer-dependent parameters in theansatzhave been determined by equating two
different but exact representations of the first four moments of the spectral density. Within a
local approximation, we could derive a compact form for the self-energy which includes the
average local occupation numbers〈niσ 〉 and a higher-order equal-time correlation function:
the band correctionBiiσ . Both expectation values can be calculated self-consistently from
the one-electron spectral density. The main advantages of our moment approach rest on the
rather simple concept, on its non-perturbative character and on the fact that no restrictions
need to be imposed as regards the geometry of the underlying lattice. In the special case
of an infinitely extended lattice with perfect translational symmetry, our approach reduces
to the spectral density approach, which has proven its usefulness in a number of previous
applications.

For the determination of the occupation numbers〈niσ 〉 and the band correctionBiiσ , the
local density of states has to be calculated from the one-particle Green function. With the
formal result for the self-energy at hand, we can replace the original Hubbard Hamiltonian in
the equation of motion for the Green function by an effective one-particle Hamiltonian. Due
to the energy dependence of the self-energy, the effective Hamiltonian itself becomes energy
dependent. It has been shown that the equation of motion can be solved numerically for
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the semi-infinite system by the standard tight-binding recursion method when performing
a straightforward generalization for the case of an energy-dependent Hamiltonian. The
advantages of the recursion method show up for tight-binding systems with reduced
(translational) symmetry, such as solid surfaces, defects or clusters. For those systems
the moment approach for the many-electron problem is thus ideally complemented by the
energy-dependent recursion method which provides a solution for the remaining one-particle
problem.

The theory has been applied to the (100) surface of a bcc single crystal. We have
considered a strongly correlated, paramagnetic electron system withU = 2W at quarter-
filling 〈n〉 = 0.5 and temperatureT = 0. The self-consistent results for the energy
dependence of the recursion coefficients have been analysed in detail. Only the low-level
and the bulk recursion coefficients allow for a simple interpretation. The energy dependence
of the coefficientsa(k)

iσ (E) for the zeroth levelk = 0 at all sitesi as well as for all levelsk
at sites in the bulk directly reflect the energy dependence of the local self-energy. On the
other hand, the coefficientb(k)

iσ (E) is a constant fork = 1 at all sites and in the bulk even for
all levelsk. In all other cases and in particular for high-level coefficients in the vicinity of
the surface, we have observed a rather complex energy dependence. In those energy ranges
where there is a non-vanishing local quasi-particle density of states (LDOS), however, the
energy dependence of the coefficients is smooth. This allows for an interpolation of the
energy dependence of the recursion coefficients which drastically reduces the computational
effort.

With the interpolation of the recursion coefficients the numerical problem remains
tractable also for a systematic study of the dependencies of the results on the model
parametersU , 〈n〉 and T . Such work is in progress. Furthermore, improvements are
intended for the future that take into account non-local terms within a refinedansatzfor
the self-energy as well as quasi-particle damping along the direction shown in [41]. The
semi-infinite Hubbard model can serve as a prototype model for studying itinerant surface
magnetism. A further application of the theory will therefore concern the question of
spontaneous magnetic order at the surface.
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